Role of the dimeric structure in Cu,Zn superoxide dismutase. pH-dependent, reversible denaturation of the monomeric enzyme from Escherichia coli.
نویسندگان
چکیده
To investigate the structural/functional role of the dimeric structure in Cu,Zn superoxide dismutases, we have studied the stability to a variety of agents of the Escherichia coli enzyme, the only monomeric variant of this class so far isolated. Differential scanning calorimetry of the native enzyme showed the presence of two well defined peaks identified as the metal free and holoprotein. Unlike dimeric Cu,Zn superoxide dismutases, the unfolding of the monomeric enzyme was found to be highly reversible, a behavior that may be explained by the absence of free cysteines and the highly polar nature of its molecular surface. The melting temperature of the E. coli enzyme was found to be pH-dependent with the holoenzyme transition centered at 66 degrees C at pH 7.8 and at 79.3 degrees C at pH 6.0. The active-site metals, which were easily displaced from the active site by EDTA, were found to enhance the thermal stability of the monomeric apoprotein but to a lower extent than in the dimeric enzymes from eukaryotic sources. Apo-superoxide dismutase from E. coli was shown to be nearly as stable as the bovine apoenzyme, whose holo form is much more stable and less sensitive to pH variations. The remarkable pH susceptibility of the E. coli enzyme structure was paralleled by the slow decrease in activity of the enzyme incubated at alkaline pH and by modification of the EPR spectrum at lower pH values than in the case of dimeric enzymes. Unlike eukaryotic Cu,Zn superoxide dismutases, the active-site structure of the E. coli enzyme was shown to be reversibly perturbed by urea. These observations suggest that the conformational stability of Cu,Zn superoxide dismutases is largely due to the intrinsic stability of the beta-barrel fold rather than to the dimeric structure and that pH sensitivity and weak metal binding of the E. coli enzyme are due to higher flexibility and accessibility to the solvent of its active-site region.
منابع مشابه
Isolation of an active and heat-stable monomeric form of Cu,Zn superoxide dismutase from the periplasmic space of Escherichia coli.
We have purified the Cu,Zn superoxide dismutase (CuZnSOD) from the periplasmic space of an Escherichia coli strain unable to synthesize MnSOD and FeSOD. Gel filtration chromatography evidenced that under all the experimental conditions tested the enzyme was monomeric. The catalytic activity of this CuZnSOD was comparable to that of other well characterized dimeric eukaryotic isoenzymes, indicat...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملIncreased expression of periplasmic Cu,Zn superoxide dismutase enhances survival of Escherichia coli invasive strains within nonphagocytic cells.
We have studied the influence of periplasmic Cu,Zn superoxide dismutase on the intracellular survival of Escherichia coli strains able to invade epithelial cells by the expression of the inv gene from Yersinia pseudotuberculosis but unable to multiply intracellularly. Intracellular viability assays, confirmed by electron microscopy observations, showed that invasive strains of E. coli engineere...
متن کاملProkaryotic Cu,Zn superoxide dismutases.
The Cu,ZnSODs (Cu,Zn superoxide dismutases) comprise a class of ubiquitous metalloenzymes that catalyse the dismutation of the superoxide radical anion into oxygen and hydrogen peroxide. The dismutation reaction involves two successive encounters of the superoxide anion with a catalytic copper centre hosted by the enzyme at the dead end of a narrow protein channel. Cu,ZnSOD is found in all euka...
متن کاملCu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells.
The intracellular localization of Cu,Zn superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) has been examined by immunofluorescence using four monoclonal anti-Cu,Zn superoxide dismutase antibodies raised against a recombinant human Cu,Zn superoxide dismutase derivative produced and purified from Escherichia coli. Colocalization with catalase, a peroxisomal matrix enzyme, wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 273 10 شماره
صفحات -
تاریخ انتشار 1998